About Drought

Maximising the impact of UK research on drought & water scarcity

Woodlands Report Card 2020

This publication covers the impacts of water scarcity and, in particular, drought on woodlands, their ecosystem response, future scenarios and approaches to management that enhance their resilience. It has been produced by About Drought, the UK's Drought & Water Scarcity Research Programme, which consists of 5 integrated research projects, funded by the UK research councils. It is designed to be used by those involved in woodland policy, design, planning and management. It is one of a series of report cards summarising current and future aspects of water scarcity in the main ecosystems of the UK.

Prepared by: Pam Berry¹, Mark Broadmeadow² & Mike Morecroft³ ¹Environmental Change Institute, University of Oxford ²Forest Commission ³Natural England

Natural Environment Research Council **About Drought** is the name of the UK Drought & Water Scarcity Programme which is supported by NERC.

www.AboutDrought.info • Email info@AboughtDrought.info

Drought in UK woodlands

Water scarcity and drought are becoming more common in the UK partly as a result of climate change, but also due to an increased demand for clean drinking water as the population grows, as well as from agriculture and industry. Woodlands are important habitats for biodiversity and an integral part of our landscape. Also, they provide timber and a wide range of other ecosystem services for people, such as the regulation of water, soil and air quality, as well as recreation opportunities. Woodlands are important too for storing carbon, thus contributing to climate change mitigation.

Water scarcity and drought vary in frequency, intensity, spatial extent and duration. Some droughts are regional, others national; they can occur in winter or summer; they can be short-lived or span multiple years; each drought event is unique and therefore its impacts are context specific.

Current Impacts of Drought

The physical responses of trees to drought and the accompanying water stress include: decreased leaf size, leaf wilting, rolling and browning, drought crack, promotion of masting (seed production) and crown dieback, which can in severe cases lead to tree mortality. One of the physiological responses of trees to the high temperatures often associated with drought is stomatal closure, so as to conserve water. This can lead to decreased growth, photosynthetic activity and transpiration. There are well-documented impacts of previous droughts on subsequent growth rates, timber quality,

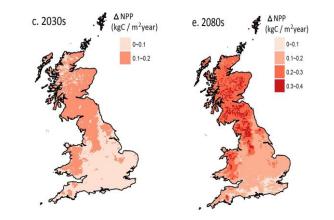
Drought is a natural phenomenon. Water scarcity is human-related, because we need the right amount of water of the right quality at the right time and in the right place. increased likelihood of pest and disease outbreaks combined with enhanced tree susceptibility to these outbreaks and tree mortality. Consequences may be long-term and far-reaching, for example, if woodland performance is compromised the carbon sink strength may be reduced or reversed and the large carbon stocks associated with the woodland put at risk.

Also, the different response of tree species can lead to changes in woodland composition, with consequences for other components of woodland biodiversity. However, often there are several factors contributing to a response and it can be difficult attributing it (solely) to drought.

Possible Future Impacts of Drought

Establishing the potential future impacts of drought on woodlands is difficult, with a variety of lines of possible evidence which can be combined, but all of which need expert interpretation.

Drought in UK woodlands


Experimental work involving established woodland is challenging due to tree size, although some extrapolations could be made based on observed responses of trees to drought. These observations are also important as input for testing models. However, in woodlands managed for forestry and some semi-natural woodlands, conventional mensuration sample plots only take growth measurements every five years, thus limiting the ability to establish the impacts of drought in specific years. The number of sites where annual measurements are made using girth bands is limited and the length of the data-series is often short or discontinuous. Tree ring analysis provides an alternative approach, while the National Forest Inventory may provide further information on the effect of drought on woodland condition.

Modelling is sometimes used to assess the potential broadscale impacts of climate change on woodlands, but most models only consider changes in mean annual or seasonal climatic parameters and thus do not capture more extreme climatic events like drought (see diagram). The inclusion of climatic extremes is important, certainly for species distribution models, for improving our understanding of the climatic limits of species and their potential future responses¹. This lack of inclusion is partly due to the difficulty in deriving future projections of drought and of modelling the biophysical processes and interactions in trees, as well as the limited monitoring of woodland attributes to inform the modelling of drought impacts. Therefore, currently modelling is not sufficiently robust to make local-scale species specific predictions.

The application of the novel drought event set in the AboutDrought programme, combined with a biophysical ecosystems model, enabled some of the potential effects of

water scarcity and drought in tree species and woodlands to be modelled. This showed the potential for beech woodland to be particularly affected in southern England and for mixed deciduous woodland to expand in northern England and Scotland.

While natural regeneration and natural selection may also lead to new drought resilient genotypes, some planned adaptation and management will be needed. What we can do to reduce the impacts of climate, water scarcity and drought in woodlands through making them more resilient and helping them adapt to future changes will depend on woodland type and environmental setting, including soil type. This report card has divided woodlands into four types: existing seminatural woodland, new native woodland, "amenity" woodland and commercial plantations as different management responses are appropriate in each of them.

Modelled mean change in net primary productivity from baseline (1975-2004)

Drought in UK woodlands

England's woodlands cover a broad spectrum of woodland types and management objectives. For the purposes of highlighting actions that are applicable to certain contrasting woodland types, this document uses a basic categorisation as set out below, but it must be recognised that, in practice, this categorisation cannot be hard and fast; for example, species choice for new native woodland on land adjacent to a conservation site may have very different considerations compared to an isolated new native woodland in a farmed landscape. Also, some of the actions, such as to ensure a diverse age and structure, apply across most woodland types and many are similar to those proposed for adaptation to climate change more broadly.

Existing semi-natural woodland

- if possible manage to maintain water levels on susceptible trees
- maintain canopy to increase shading and moisture levels
- gradual 'halo-thinning' of veteran tree
- for saproxylic species, if replanting, select tree species with similar decay fungi and mechanisms to existing species
- promote natural regeneration so that evolutionary adaptation enhances the resilience of the next cohort to the changing climate, including episodes of drought
- if species diversity is limited and susceptible to the impacts of drought, consider enrichment planting of native tree species

New native woodland

- consider rainfall on site and potential changes with climate change
- plant a diversity of native species, appropriate to the soil type, including those which are drought tolerant
- consider opportunities to encourage natural regeneration next to existing woodland
- take account of wider information on climate change adaptation, such as the Climate Change Adaptation Manual²

'Amenity woodland'

- similar to new native woodland, but more scope for nonnatives
- consider using fast growing, drought tolerant species which may create a 'mature feel'

Commercial plantations

- thinning to reduce water stress
- in drought prone areas use more drought tolerant provenances or species to increase resilience
- consider ecology (shade tolerance) and natural species mixes in home ranges
- consider future wood products alongside species

Risk of severity of damage to woodlands

	Severity of damage to woodlands		
Likelihood*	Mild Moderate		Severe
Low			Mortality of some old and veteran trees and susceptible species, especially on certain soil types. Local loss of trees/woods to wildfires
Medium		Reduction in the health of trees and increased mortality, partly due to increases in pests and pathogens. Increased risk of loss of vulnerable species/woodland types.	High mortality of old and veteran trees and associated species, drought crack of timber species and premature senescence. Risk of severe damage to woodlands
High	Short term reduction of growth/productivity, leaf wilt and, maybe, premature senescence of ground flora	Increased mortality of new	Longer-term changes in woodland

*Likelihood is a coarse indication of the chances of droughts occurring that would instigate damage to the system. It is a combination of the change magnitude, duration and timing of the events and their frequency. Each response requires its own particular combination of drought characteristics. As an example the summer of 2018 water scarcity / drought event, created conditions of moderate and severe impacts and the chances of similar droughts are 'medium'.

Stages of drought

The stages of drought are probably (i) 'physiological impacts' (wilting, marginal browning, mildew), (ii) 'physical impacts' (early senescence, impacts on ground flora, mortality of seedlings/saplings, limb dropping, masting, drought crack), and (including longer term) (iii) 'structural impacts' (mortality, wildfire, impacts on subsequent growth and pest/disease susceptibility).

Physiological impacts e.g. leaf browning

Physical impacts e.g. mortality of saplings

Structural impacts including increased pest susceptibility, such as damage from bark beetle

Mitigating Actions – Physical

Physical effects of drought & mitigating actions

Effects	Response	Future scenarios	Mitigation	SN = Existing semi-natural woodland	
Change in woodland age and/or growth structure	Seedlings and saplings are more susceptible to drought mortality. Older and veteran trees may become more susceptible to disease and/or die ^{3, 4, 5} .	Woodlands, especially lowland beech woodlands, may become more scrubby as older trees die ⁶ . Species that coppice or regenerate through root-suckering may become more common	 MI Ensure a diverse age and structure⁶, potentially through specific management (e.g. tree thinning) and change to continuous systems of management. M2 Thinning to reduce water stress thus limiting the severity of shorter periods of drought. All M3 Plant more drought tolerant species⁶ through 'enrichment planting', in combination with thinning. SN M4 Gradual 'halo-thinning' of veteran trees may also help to enhance their water supply. SN 	N = New native woodlands A = Amenity woodland C = Commercial plantations	
Drought enhances the combustibility of ground flora and litter fuel load increasing the potential for wildfire	Loss of ground-flora and damage to/loss of entire woodlands ⁶ . Loss of seedlings and saplings; damage to surrounding assets/property and National Critical Infrastructure.	Increased frequency of occurrence due to climate change and/or increased public use ⁷	 M5 Wildfire management planning⁶; including Use of Wildfire Management Plans including; wildfire risk assessments, wildfire management zones and wildfire response plans. Fire belts of broadleaves for high risk coniferous (conifer) landscapes. Location of strategic fire and fuel breaks Wildfire firefighting and prevention training for land owners and fire and rescue services. Partnership working with fire and rescue services. Fuel load management Public and land owner education 		
Soil type can affect soil moisture levels and rooting depths	Reduced tree growth on sandy- textured, freely-draining soils. On imperfectly or poorly draining soil types, drought stress could become more critical when winter waterlogging is followed by summer drought leading to a possible reduction of tree growth ^{6,7,8}	Greater waterlogging in winter may increase, which could reduce tree growth. Increase in Sitka spruce bark cracking on drought-prone soils ⁹	M6 Plant more drought-tolerant species (e.g. Scots pine, Douglas fir, oak or small-leaved lime or different provenances ^{6, 9,10}). All M7 Focus planting on wetter sites and/or on north-facing slopes ² N A M8 Manage water levels on susceptible sites e.g. through increasing soil water. SN		

Mitigating Actions – Biological I

Effects	Response	Future scenarios	Mitigation
Reduction in tree growth ^{11,12,13} . These may be short or longer- term ¹⁴	Growth may be reduced as trees close their stomata, so as to conserve water. Following the 1976 drought, the recovery of beech varied according to age, site and tree health ^{3,12,15} . Research on Lady Park Wood Gwent, UK, provides a good example of some of these effects on beech ^{4,5} . The timing of the drought may be important, with drought after May having little effect on twig extension, but later in the season it may affect the following year's growth, although other factors may be involved in this.	While increasing temperatures and CO ₂ may increase tree growth in many parts of the UK, reduced summer rainfall and increased frequency of droughts are likely to lead to at least short- term reductions in growth.	M6 Plant more drought-tolerant species (e.g. Scots pine, Douglas fir, English oak or small-leaved lime) on appropriate sites (not in semi-natural ancient woods) N A C M9 Plant a proportion of more drought tolerant provenances ^{4, 6,10} N C
The magnitude of the effect can be a function of various (inter-related) factors including soil type (see Physical effects) and: Reduction in tree growth due to preceding conditions	Drought following a dry winter accelerates the establishment of drought conditions. Beech has shown a significant negative relationship between growth and high soil moisture stress ¹⁵ . Greatest reductions in growth were found when drought years coincided with mast years, due to resource allocation issues, but there appeared to be no effect on growth in the subsequent year ^{16, 17}	Potential increase in frequency of water scarcity and drier preceding conditions in summer	M10 Increase woodland size to reduce area water stress due to edge effects ² SN M2 Thinning to reduce water stress ⁶ All
Reduction in tree growth related to species	Beech, birch and sycamore appear to be more drought sensitive ¹⁵ . For beech, greatest reductions in growth were found when drought years coincided with mast years ¹⁷ . A study of five oak species, including two natives (English oak and Sessile oak) and three non-natives (Scarlet oak, Swamp Spanish oak and Hungarian oak) found all had reduced growth associated with drought year, with recovery being fastest for Swamp Spanish oak, Hungarian oak and English oak, and slowest for Sessile oak ¹³ .	Some autonomous adaptation leading to more drought resistant genotypes may occur	Mó Plant more drought-tolerant species ^{2,4,6} (e.g. Scots pine, Douglas fir, English oak (not in semi-natural ancient woods ⁹) N A C Hornbeam, roble beech and sweet chestnut on sites too dry for beech ⁶ A, N M9 Plant a proportion of more drought tolerant provenances ^{6, 10} N C M11 Consider planting new drought-tolerant species ¹³ , (but not in semi-natural ancient woods). N A C

Mitigating Actions – Biological 2

Effects	Response	Future scenarios	Mitigation
Reduction in tree growth due to age	A survey of 30 beech woods in southern England found that younger trees were less affected by drought, but some older trees were killed ² . Beech stands in an ancient mixed deciduous woodland, Lady Park Wood, Gwent, UK, showed that beech trees on the upper part of the slope that survived the 1975-6 drought did not start growing again until 1977 and that growth rates between 1983 and 1992 remained significantly below those from 1955-1977 ⁵		MI Ensure a diverse age and structure ⁴ . SN, N
Mortality – often several years or even decades afterwards ^{5,} 18	Attributing mortality to a particular drought is difficult as trees will be affected by various pressures, including subsequent droughts. Old, slow-growing trees may have a (very) delayed mortality response. Drought can hastened the death of already weakened trees and contribute to the loss of veteran trees and their saproxylic invertebrates, lichens and fungi ²	Increased mortality, especially of susceptible trees and on susceptible sites in southern England.	M12 For saproxylic species, when replanting, select tree species with similar decay fungi and mechanisms to existing species ² N M13 Encourage natural regeneration to promote species 'reorganisation' N M14 Undertake enrichment planting with drought tolerant native species if species diversity in the over-storey is limited. N
Productivity decrease	Drought, through the drying of soils can lead to reduced gross primary productivity and decreased growth ¹⁹ . In the European drought of 2003, the productivity of temperate beech woodlands were particularly affected. If trees have access to available water, then the increased temperatures associated with the drought can enhance net primary productivity and net ecosystem exchange ^{20,21}	Productivity and yields of some species are likely to decrease due to reduced water availability, especially in summer, and due to droughts ²²	M6 Plant more drought-tolerant species ^{2,4,6} (e.g. Scots pine, Douglas fir, English oak or small- leaved lime (not in semi-natural ancient woods ⁹) N A C Hornbeam, roble beech and sweet chestnut on sites too dry for beech ⁶ N A M9 Plant a proportion of more drought tolerant provenances s ^{4, 6, 10} N, C M11 Consider planting new drought-tolerant species ¹³ N A C

Mitigating Actions – Biological 3

Effects	Response	Future scenarios	Mitigation
Woodland species composition	Mortality can open up the canopy, especially if younger trees and sapling are affected, and provide opportunities for new species. Shifts in the composition of native woodland communities/types. ^{23,24} Epiphytes, particularly ferns, bryophytes and lichens with oceanic distribution patterns may be particularly susceptible. ⁶	The distribution of beech woodlands may change, with declines in southern Britain ^{2,24, 25} . The movement of species within woodlands could be affected and open ground habitats/scrub develop on particularly dry soils.	M15 Reduce the impacts of other pressures, such as pests and diseases, pollutants, over-grazing and Development ² SN, C M13 Encourage natural regeneration to promote species 'reorganisation' N M16 Maintain canopy to increase shading and moisture levels ² SN M2 Thinning to reduce moisture stress All
Condition and health - crown thinness, dieback and chlorosis, reducing tree health	Following the 1976 drought, healthy trees recovered more quickly, but some still showed reduced growth 13 years later, especially in years with high soil moisture stress ²⁶ . Cases of confirmed or suspected drought damage to trees between 1972 and 2006 found that beech, Sitka spruce, larch and Norway spruce were most frequently affected. Repeated summer droughts are thought to have been a cause of long-term dieback in mature oak, ash and beech in Britain ²⁷ and poor crown condition in beech ²⁸	Health of susceptible trees and species are likely to decrease ²	M8 Manage water levels on susceptible sites (short-term). SN M6 Plant more drought-tolerant species ^{2,4, 6} (e.g. Scots pine, Douglas fir, English oak or small- leaved lime ⁹ N A C Hornbeam, roble beech and sweet chestnut on sites too dry for beech ⁶ N A M9 Plant a proportion of more drought tolerant provenances ^{6,10} N, C M12 Consider planting new drought-tolerant species ¹³ SN A C

Mitigating Actions – Biological 4

Effects	Response	Future scenarios	Mitigation	
Pests – increased numbers of pest and susceptibility	Debarking of trees by grey squirrels seems to have been triggered by the 1976 drought, leading to the damage or death of the trees, in particular beech ²⁹ . This opened the canopy and provided an opportunity for ash and both small- and large-leaved lime to grow. Drought stress can increase tree susceptibility to infestation.	Based on past experience of droughts, susceptible trees/species could be more affected by pests e.g. bark beetle (<i>Tomicus piniperda</i>) could affect Scots pine and spruce bark beetle – spruce ^{6.8.9} . Climate change may lead to new (non-native) pests entering the UK (e.g. European spruce bark beetle) and cause reduced growth or mortality of drought- stressed trees.	M17 Prompt removal of felled logs or windthrown trees to reduce the likelihood of build-up of local pest populations ⁹ SN, C. NB some deadwood needs to be left to meet UK Forestry Standards M18 Vigilance in ports to prevent accidental introductions M19 Implement good	
Pathogens – increased susceptibility to infection ⁹	Water-stressed tissues act as a better substrate for pathogen growth, and/or because drought-stressed trees have reduced defence mechanisms ^{30,31} . Root pathogens e.g. <i>Phytophthoras</i> may lead to the death of fine roots, with trees suddenly dying when water stressed ⁷ . Bark cracking may facilitate infection.	Based on past experience of droughts, susceptible trees/species could be more affected by pathogens, such as <i>Armillaria</i> spp. and <i>Heterobasidion annosum</i> ^{6,7,9} . Climate change may lead to new (non-native) pathogens entering the UK (e.g. and cause reduced growth or mortality of drought-stressed trees.	biosecurity practice when managing/visiting woodlands ³² All	

References

- Zimmerman, N.E., Yoccoz, N.G., Edwards, T.C. et al. (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proceedings of the National Academy of Sciences, 106 (Supplement 2) 19723-19728; DOI: 10.1073/pnas.0901643106.
- Natural England and RSPB (2014) Climate Change Adaptation Manual.
- Aldhous, J. R. (1981) Beech in Wessex a perspective on present health and silviculture. Forestry, 54,197-210
- Cavin, L., Mountford, E. P., Peterken, G. F. and Jump, A. S. (2013) Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct Ecol, 27, 1424-1435.
- Peterken, G. F. and Mountford, E.P. (1996) Effects of drought on beech in Lady Park Wood, an unmanaged mixed deciduous woodland, Forestry, 69, 125–136.
- Ray, D., Morison, J. and Broadmeadow, M. (2010) Climate change: impacts and adaptation in England's woodlands. Forestry Commission Research Note, FCRN201.
- Ray, D. (2008) Impacts of climate change on forestry in Scotland – a synopsis of spatial modelling research. Forestry Commission Scotland, Forestry Commission Research Note 101.
- Ray, D. (2008) Impacts of climate change on forestry in Wales a synopsis of spatial modelling research. Forestry Commission Scotland, Forestry Commission Research Note 301.
- Green, S. and Ray, D. (2009) Potential impacts of drought and disease on forestry in Scotland –Forestry Commission Research Note, FCRN004, pp8.
- Broadmeadow, M.S.J., Ray, D. and Samuel, C.J.A. (2005) Climate change and the future for broadleaved tree species in Britain, Forestry, 78, 145–161.
- Lonsdale, D., Hickman, I.T., Mobbs, I.D. and Matthews, R.W. (1989) A quantitative analysis of beech health and pollution across southern Britain. Naturwissenschaften 76, 571-573.
- Innes, J.L. (1998) The impact of climatic extremes on forests: An introduction. In: Beniston M., Innes J.L. (eds) The Impacts of Climate Variability on Forests. Lecture Notes in Earth Sciences, vol 74. Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/BFb0009762
- Sanders, T.G.M., Pitman, R. and Broadmeadow, M.S.J. (2014) Species-specific climate response of oaks (Quercus spp.) under identical environmental conditions. iForest 7: 61-69.
- Wilson, S.M., Broadmeadow, M.S.J., Sanders, T. and Pitman, R. (2008) Effect of summer drought on the increment of beech trees in southern England. Quarterly Journal of Forestry, 102, 111-120.
- 15. Power, S.A. (1994) Temporal trends in twig growth of Fagus

sylvatica L. and their relationships with environmental factors. Forestry, 47, 13-30.

- Hacket-Pain A.J., Friend A.D., Lageard, J.G.A. and Thomas, P.A. (2015) The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers' climate on ring width. Tree Physiol 35:319–330
- Hacket-Pain A.J., Lageard, J.G.A. and Thomas, P.A. (2017) Drought and reproductive effort interact to control growth of a temperate broadleaved tree species (Fagus sylvatica), Tree Physiology, 37, 744–754. https://doi.org/10.1093/treephys/tpx025
- Ciais, P., Reichstein, M., Viovy, N. et al. (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058), 529-533.
- De Boeck, H.J. and Verbeeck, H. (2011) Drought-associated changes in climate and their relevance for ecosystem experiments and models. Biogeosciences, 8, 1121–1130.
- Wilkinson, M.; Eaton, E. L.; Broadmeadow, M. S. J.; et al. (2012) Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England. Biogeosciences, 9, 5373-5389.
- Petr, M., Boerboom, van der Veen, L. G. J. et al. (2014) A spatial and temporal drought risk assessment of three major tree species in Britain using probabilistic climate change projections. Climatic Change, 124, 791-803.
- 22. Broadmeadow, M.S.J., Morecroft, M.D., and Morison J.I.L. (2009) Observed impacts of climate changes UK forests to date. In: Read, D.J., Freer-Smith, P.H., Morison, J.I.L., Hanley, N., West, C.C. and Snowdon, P. (eds). Combating climate change – a role for UK forests. An assessment of the potential of the UK's trees and woodlands to mitigate and adapt to climate change, pp 50-66. The Stationery Office, Edinburgh.
- Mountford, E. P., G. F. Peterken, et al. (1999) Long-term change in growth, mortality and regeneration of trees in Denny Wood, an old-growth wood-pasture in the New Forest (UK). Perspectives in Plant Ecology, Evolution and Systematics, 2, 223-272.
- 24. Broadmeadow, M.S.J., Webber, J., Ray, D. and Berry, P. (2009) An assessment of likely future impacts of climate change on UK forests. Chapter 5 in, Read, D., Freer-Smith, P.H., Morison, J., Hanley, N., West, C., Snowdon, P. and Broadmeadow, M. (eds.) Combating Climate Change - A Role For UK Forests: An assessment of the potential of the UK's trees and woodlands to mitigate and adapt to climate change. The Stationery Office, Edinburgh. pp. 67-98.
- Berry, P., Onishi, Y. and Paterson, J. (2012) Understanding the implications of climate change for woodland biodiversity and community functioning - synthesis of key findings. Report for the

Forestry Commission.

- Power, S.A. (1994) Temporal trends in twig growth of Fagus sylvatica L. and their relationships with environmental factors. Forestry 47, 13-30.
- Gregory, S.C. and Redfern, D.B. (1998) Diseases and disorders of forest trees. Forestry Commission Field Book 16. The Stationery Office, London
- Innes, J.L. (1992) Observations on the condition of beech (Fagus sylvatica L.) in Britain in 1990. Forestry 65, 35–60.
- Mountford, E.P., Peterken, G.F., Edwards, P.J. and Manners J.G. (2006) Long-term patterns and impacts of grey squirrel debarking in Lady Park Wood young-growth stands (UK). Forest Ecology and Management, 232, 100-113.
- Desprez-Loustau, M-L., Marcais, B., Nageleisen, L-M. et al. (2006) Interactive effects of drought and pathogens in forest trees. Annals of Forest Science 63, 597–612.
- Lonsdale, D. and Gibbs, J. (2002) Effects of climate change on fungal diseases of trees. In Climate Change: Impacts on UK Forests (ed M. Broadmeadow). Bulletin 125, Forestry Commission, Edinburgh.
- https://www.gov.uk/guidance/prevent-the-introduction-andspread-of-tree-pests-and-diseases

About Drought

Maximising the impact of UK research on drought & water scarcity

Visit our website www.AboutDrought.info

Find out more About Drought.

- About Drought Handbook
- Watch our video documentary
- Watch our webinars
- Visit the project websites

